Printed Pages: 4

EEE-301

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 121306

Roll No.

B. Tech.

(SEM. III) (ODD SEM.) THEORY EXAMINATION, 2014-15

BASIC SYSTEM ANALYSIS

Time: 3 Hours]

[Total Marks: 100

Note: Attempt all questions.

1. Answer any TWO parts:

10x2 = 20

- (a) Determine whether the system y(t)=10x(t)+5 is
 - (i) Static or dynamic
 - (ii) Linear or non linear
 - (iii) Causal or noncausal
 - (iv) stable or unsatable.
- (b) Synthesize the waveform as shown in Fig. 1 in term of basic signals.

Fig. 1

F-V Analogy and (ii) F-I Analogy

2. Answer any TWO parts:

10x2=20

| Contd...

- List the properties to be satisfied by a periodic function for which Fourier series exists. Discuss the procedure for evaluating coefficient of a trigonometric Fourier series.
- Using waveform symmetries obtain trigonometric Fourier b) series for the following sawtooth waveform.

Fig. 3

Use duality to evaluate the inverse Fourier transform (c) of the step function in frequency, $F'(j \omega) = u(\omega)$

2

Answer any TWO parts:

10x2 = 20

Find the Laplace transformation of voltage waveform Shown in fig. 4

Fig. 4

Find the inverse Laplace Transformation of following

(i)
$$\frac{3s}{(s^2+1)(s^2+4)}$$
 (ii) $\frac{s^2}{(s^2+1)^2}$

(ii)
$$\frac{s^2}{\left(s^2+1\right)^2}$$

- Consider the circuit shown in figure 3, where the switch S is switched on at t=0. Obtain the expression for the current. Also find the current through the capacitor at t=0⁺. Assume the capacitor to be discharged initially.
- Answer any TWO parts: 4.

10x2 = 20

- Define and explain the following terms,
 - State variables (i)
- State vector
- State trajectory
- (iv) State
- State Space.
- System matrix of a system is given by

$$A = \begin{bmatrix} \frac{1}{2} & \frac{5}{2} \\ \frac{1}{2} & \frac{7}{5} \end{bmatrix}$$

Find the state transition matrix $\Phi(t)$ of the system,

121306

3

[Contd....

(c) obtain the state variable representation of the systems described by the following differential equations

(i)
$$y+4y+5y+2y=u$$

(ii)
$$\frac{d^3x}{dt^3} + 3\frac{d^2x}{dt^2} + 4\frac{dx}{dt} + 4x = u_1(t) + 3u_2(t) + 4u_3(t)$$
and the outputs.

$$y_1 = 4\frac{dx}{dt} + 3u_1$$
$$y_2 = \frac{d^2x}{dt^2} + 4u_2 + u_3$$

5. Answer any TWO parts:

10x2=20

- (a) Solve the following difference equation by means of the z-trnasform: f(k+2) f(k) = 0; f(0) = 1, f(1) = 1
- (b) Determine the discrete time signal for which the z-transform of a function f(t) is given by:

$$f(z) = \log(1 + az^{-1}); |z| > |a|.$$

(c) find the inverse z-transform of

$$f(z) = \frac{36z^2 - 10z}{12z^2 - 7z + 1}; ROC: \frac{1}{4} < |z| < \frac{1}{3}$$